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Abstract
While Graph Neural Networks and Transformers
have shown promise in predicting molecular prop-
erties, they struggle with directly modeling com-
plex many-body interactions. Current methods of-
ten approximate interactions like three- and four-
body terms in message passing, while attention-
based models, despite enabling direct atom com-
munication, are typically limited to triplets, mak-
ing higher-order interactions computationally de-
manding. To address the limitations, we intro-
duce MABNet, a geometric attention framework
designed to model four-body interactions by fa-
cilitating direct communication among atomic
quartets. This approach bypasses the compu-
tational bottlenecks associated with traditional
triplet-based attention mechanisms, allowing for
the efficient handling of higher-order interactions.
MABNet achieves state-of-the-art performance
on benchmarks like MD22 and SPICE. These
improvements underscore its capability to accu-
rately capture intricate many-body interactions in
large molecules. By unifying rigorous many-body
physics with computational efficiency, MABNet
advances molecular simulations for applications
in drug design and materials discovery, while its
extensible framework paves the way for modeling
higher-order quantum effects.

1. Introduction
Molecular representation is pivotal in cheminformatics, crit-
ically influencing the accuracy of property prediction in
drug discovery and materials science (Fourches et al., 2010).
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Traditional approaches, including structural fingerprints and
descriptor-based approaches (Rogers & Hahn, 2010; Jaeger
et al., 2018), encode molecules using simplified heuristics
that emphasize one- and two-body interactions (Song et al.,
2020; Rao et al., 2022a), for instance, atomic connectiv-
ity or pairwise bond relationships. While these represen-
tations efficiently capture coarse structural patterns, they
inherently neglect complex quantum mechanical phenom-
ena. Such simplifications limit their utility in modeling
properties rooted in the synergistic interplay of multiple
atoms or bonds (Hansen et al., 2015).

To address these limitations, modern machine learning
frameworks increasingly rely on quantum mechanical prin-
ciples to predict molecular properties, necessitating explicit
modeling of many-body interactions (Unke et al., 2021).
These include not only classical covalent and non-covalent
atom-atom interactions (two-body) but also higher-order
terms such as bond-angle distortions (three-body), torsional
potentials (four-body), and electronic delocalization effects
(e.g., in conjugated π-systems). For example, at the quan-
tum level, properties such as dipole moments, polarizability,
and excitation energies emerge from entangled multi-atom
correlations that resist decomposition into pairwise terms.
Ignoring these interactions can lead to inaccurate predictions
of molecular properties (Yang & Zhou, 2008).

To mimic the many-body terms, Graph Neural Networks
(GNNs) (Schütt et al., 2018; Gasteiger et al., 2020b) and
Transformers (Liao & Smidt, 2023) have emerged as foun-
dational architectures by leveraging node-edge frameworks
to represent atoms and bonds as discrete entities. How-
ever, their reliance on pairwise correlations inherently limits
their capacity to encode multi-atom interactions, such as
three-body angle dependencies or four-body torsional terms.
While these architectures approximate higher-order effects
through the iterative aggregation of local interactions, this in-
ductive bias introduces systematic errors in capturing global
quantum behaviors, particularly in systems with strong elec-
tronic cooperativity or long-range correlations.

Various architectures have recently been proposed to mit-
igate these limitations. For example, SE3Set (Wu et al.,
2024) operates on hypergraphs constructed from overlap-
ping fragments to provide a natural representation of many-
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body phenomena. ViSNet (Wang et al., 2024) and Quin-
Net (Wang et al., 2023b) implicitly capture many-body geo-
metric features in message passing, aligning with the force
fields used in classical molecular dynamics (MD). Despite
their strengths, these methods primarily rely on message-
passing mechanisms that approximate multi-body interac-
tions rather than explicitly modeling them, often introducing
trade-offs in accuracy or computational efficiency.

To address these challenges, we propose MABNet (MAny-
Body interaction Network), a novel four-body direct com-
munication attention mechanism specifically designed for
quantum many-body systems. Unlike traditional methods
that rely on approximations or implicit representations of
high-order interactions, our approach explicitly models com-
plex interactions involving up to four bodies. This explicit
modeling not only captures the intricate geometric and struc-
tural dependencies within molecular systems but also en-
sures computational efficiency, making it suitable for larger
molecular simulations. These geometric features also en-
hance the E(3) equivariant message-passing process by pro-
viding a more expressive and accurate representation of the
molecular system’s symmetries. By explicitly integrating
higher-order interactions into the architecture, our approach
overcomes the limitations of existing methods, paving the
way for more precise molecular property predictions.

Our approach achieves state-of-the-art (SOTA) performance
on challenging benchmarks, including MD22 and SPICE,
showcasing its capability to accurately capture intricate
many-body interactions, even in larger and more complex
molecular systems. By excelling across diverse molec-
ular structures, our method highlights its robustness and
adaptability, addressing the limitations of existing models
that struggle with high-order interactions. This exceptional
performance not only validates its effectiveness but also
underscores its transformative potential in computational
chemistry. By providing a more accurate and physically
grounded framework for modeling complex systems, our
method paves the way for advances in molecular dynamics
simulations, quantum chemistry, and related fields.

The contributions can be summarized as follows:

• We introduce a novel attention mechanism that explicitly
models complex higher-order interactions, enabling the
direct communication of four-body interactions in molec-
ular quantum many-body systems.

• Our model generates rich geometric features through the
four-body direct communication attention mechanism in
the E(3) equivariant message-passing process, improving
the expressivity and accuracy of our model.

• The proposed method achieves SOTA performance on
challenging benchmarks, including MD22 and SPICE,

demonstrating its ability to accurately model intricate
many-body interactions across diverse and complex
molecular systems.

2. Related Work
2.1. Molecular Property Predictions

Graph neural networks (GNNs) (Gilmer et al., 2017; Song
et al., 2020; Rao et al., 2022b; 2024a) have revolutionized
molecular property predictions by enabling accurate mod-
eling of atomic interactions. They (Schütt et al., 2018;
Gasteiger et al., 2020b) naturally encode atomic systems
as graphs, preserving permutation invariance through mes-
sage passing to predict molecular energies directly from
quantum states. However, their limited ability to incorpo-
rate geometric symmetries (e.g., SE(3)/E(3) equivariance)
restricts generalization across conformations and coordinate
systems.

Recent advances address this by integrating geometric in-
ductive biases (Satorras et al., 2021; Thölke & Fabritiis,
2022; Rao et al., 2024b). Equivariant architectures (Schütt
et al., 2021) use irreducible representations to enforce
symmetry-aware tensor transformations, while invariant
methods (Montavon et al., 2012) augment features with de-
scriptors like distances or angles. Graph transformers (Liao
& Smidt, 2023) have also been adapted to geometric do-
mains: Equiformer combines equivariant irreps with at-
tention mechanisms, achieving accurate force and energy
predictions.

2.2. Many-body Interactions Modeling

Traditional approaches approximate many-body interac-
tions via pairwise decompositions (atom-atom, atom-bond,
etc.) (Unke et al., 2021), but struggle to capture coopera-
tive phenomena like dipole moments, polarizability, and
excitation energies, which require explicit multi-atom corre-
lation modeling. Neural networks must preserve SE(3)/E(3)-
equivariance while directly representing hierarchical rela-
tionships, avoiding reliance on pairwise approximations.

Recent methods show partial progress: SE3Set (Wu et al.,
2024) employs hypergraphs to model delocalized effects but
introduces computational overhead from fragment decompo-
sition, while VisNet/QuinNet (Wang et al., 2024; 2023b) ap-
proximate multi-body terms via geometric message passing,
inheriting classical force fields’ limitations. Emerging ap-
proaches like TGT (Hussain et al., 2024) enable direct triplet
communication but lack SE(3)/E(3)-equivariance and scal-
ability limited to three-node interactions. Other strategies,
such as GEM-2’s (Liu et al., 2022) axial attention over edge
pairs and AlphaFold’s (Jumper et al., 2021) scalar-based
triangular updates, either constrain interaction granularity
to triplets or rely on scalar approximations. Collectively,
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Table 1. Comparison of different many-body interactions.
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these methods fall short of enabling explicit and equivari-
ant modeling of many-body effects (e.g., torsions, covalent
hybridization). In general, these limitations underscore the
need for architectures that unify E(3)-equivariance preserva-
tion with scalable many-body interaction modeling.

3. Preliminaries
3.1. Many-body Interactions

The properties of a molecular system, such as energy, can be
expressed as the sum of contributions from various factors,
including bonds, bond angles, torsion angles, and nonbond-
ing interactions (such as electrostatic and van der Waals
forces) (Unke et al., 2021). These include three-body in-
teractions (e.g., bond angles, where the energy depends
on three linked atoms), four-body interactions (e.g., tor-
sion angles, involving four sequentially bonded atoms), and
higher-order collective effects (e.g., electronic polarization).

Therefore, the total energy E of an N -atom system is:

E =
∑
i<j

E
(2)
ij +

∑
i<j<k

E
(3)
ijk +

∑
i<j<k<l

E
(4)
ijkl + . . . , (1)

where E(n) denotes n-body terms. Classical force fields
approximate E(3), E(4) with handcrafted functions, while
MLFFs learn them directly.

3.2. Complexity Analysis

Node-to-Node Attention (Pairwise) Standard attention
mechanisms (Vaswani, 2017; Chen et al., 2021) in Trans-
formers operate on node pairs (i, j), yielding a computa-
tional complexity of O(|N |2), where N is the number of
atoms. While efficient, this approach restricts expressivity
to 1-GWL (Graph Weisfeiler-Lehman) equivalence (Joshi
et al., 2023), failing to distinguish molecular substructures
requiring higher-order interactions. This limitation arises be-
cause pairwise attention cannot explicitly model multi-body
geometric relationships like angles or torsions.

Axial Attention Axial attention (Liu et al., 2022) gener-
alizes self-attention to pairs of edges (i, j) and (j, k), com-

puting interactions as:

sij =
∑
k

(aijkvjk), aijk = Softmax(qT
ijkjk), (2)

where qT
ij ,kjk are queris and keys for edge pairs. Though

this extends complexity to O(|N |3), it neglects critical 3rd-
order geometric features (e.g., the angle θijk) and the direct
influence of the (i, k) pair. GEM-2 (Liu et al., 2022) par-
tially addresses this by 3rd-order positional encodings, but it
remains limited to implicit angular dependencies, reducing
accuracy in many-body systems.

Triangular Update (AlphaFold) AlphaFold’s triangu-
lar update aggregates scalar features (Jumper et al., 2021;
Lu et al., 2022; Abramson et al., 2024) from edge
triplets (ij, jk, ik) via tensor products, achieving com-
plexity O(|N |2.37) through optimized matrix multiplica-
tion (Ambainis et al., 2015). However, this method lacks
attention-based gating: all triplets contribute equally, re-
gardless of chemical relevance. Additionally, scalar fea-
tures discard directional information (e.g., vectorial forces),
and unbounded summation over variable-sized graphs intro-
duces instability.

Triplet Graph Transformers (TGT) Triplet-based meth-
ods (Hussain et al., 2024) explicitly model 3rd-order inter-
actions (i, j, k), enabling direct information flow between
edges (i, j) and (j, k). The attention mechanism becomes:

sij =
∑
k

aijksjk, aijk = Softmax(qT
ijkjk + ϕ(θijk)),

(3)
where qT

ij ,kjk are queries and keys for the triplet of nodes,
and ϕ(θijk) encodes the angular features. While this im-
proves expressivity, the O(|N |3) complexity persists, and
equivariance is sacrificed by scalarizing geometric features.

Proposed Many-body Attention Network (MABNet)
Our method generalizes attention to four-body interactions
(i, j, k, l), critical for modeling torsional angles ϕijkl and
non-local polarization effects. To mitigate the combinato-
rial explosion O(|N |4), we employ: (1) spatial sparsity:
restrict interactions to quartets within a cutoff radius rc;
(2) quantum-inspired pruning: prioritizes edges critical for
multi-body interactions (e.g., dihedrals).

The resulting complexity scales as O(|N |2 · |E|), where
|E| ≤ 6|N | is the average neighborhood size. Crucially,
our attention retains SE(3)-equivariance by operating on
vector-valued queries, keys, and values:

sij =
∑
k,l

aijkl · vjkl, (4)

aijkl = Softmax

(
< qij ,kjkl > +ψ(ϕijkl)√

d

)
, (5)
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Figure 1. The overall framework of our method.

where ψ(ϕijkl) encodes torsional features via spherical har-
monics. This framework combines the expressivity of ex-
plicit four-body terms with the efficiency of equivariant
sparsity, addressing the limitations of prior works (Table 1).

4. Methodology
4.1. Model Architecture

Figure 1 illustrates our framework. The input is a 3D molec-
ular structure defined by atomic types and coordinates. The
model first embeds atomic and edge features into scalar
features , vector features , and edge features. Inspired by
VisNet (Wang et al., 2024), these features are iteratively up-
dated through equivariant graph message passing (EquiMP)
blocks, which enforce E(3)-equivariance during all trans-
formations. The key innovation to our model is the many-
body attention module within each EquiMP block, which
explicitly models four-body interactions to capture complex
quantum effects. Finally, the updated scalar and vector fea-
tures are processed to predict total energy, and atomic forces
are derived as the energy gradient with respect to atomic
coordinates, ensuring physical consistency.

4.2. Feature Embedding

As shown in Figure 1(a), the feature embedding layer trans-
forms 3D molecular structures into three components: scalar
features x ∈ RN×D, vector features v⃗ ∈ RN×L×D, and
edge features e ∈ RE×D, where N is the number of atoms,

E represents the number of edges, L = (lmax + 1)2 − 1
corresponds to the spherical harmonics expansion level, and
D is the feature dimensionality.

Scalar and Vector Node Feature Embedding Scalar
features are derived through two sequential stages: (1)
atomic embedding directly encodes atomic types into high-
dimensional vectors, followed by (2) neighborhood aggre-
gation that integrates adjacent atom data via radial basis
function (RBF)-expanded distances, filtered through a cutoff
function and combined with neighbor features via element-
wise multiplication. The scalar features are generated by
concatenating the initial atomic embeddings with the aggre-
gated neighborhood representations:

xnbh =
∑

j∈N (i)

(ϕ(dij) · (Wnd
rbf
ij + bn)⊙ hj), (6)

where ⊙ denotes element-wise multiplication. Wn and
bn are learnable parameters, and N (i) denotes the set of
neighboring nodes of node i. The scalar feature xi of node
i is computed by concatenating its initial feature hi with
the aggregated neighbor features xnbh, followed by a linear
transformation:

xi = Ws(hi || xnbh) + bs, (7)

where the || denotes the concatenation operation. Ws and
bs are learnable parameters. The vector features v⃗ are ini-
tialized as zero tensors to preserve equivariance.
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Edge Feature Embedding Edge features are computed
by combining the scalar features of connected nodes with
edge attributes transformed via RBF expansion into a higher-
dimensional space. This process captures complex interac-
tion patterns, enhancing the model’s ability to understand
intricate network relationships.

Full implementation details for scalar, vector, and edge
embeddings are provided in Appendix A.1.

4.3. Many-body Attention Module

As shown in Fig. 1(b), the scalar features x are updated
through a many-body attention module in each EquiMP
layer. Let xl ∈ RN×D and el ∈ RE×D denote the node and
edge features at layer l, respectively. These features interact
through two distinct relationship tensors:

fNN
ij = xli · xlj , fNE

jkl = xlj · elkl, (8)

where N , E, and D correspond to the number of atoms,
edges, and feature dimensions. The node-node interac-
tion tensor fNN captures pairwise atomic interactions (two-
body terms), while the node-edge interaction tensor fNE

encodes three-body relationships through edge-mediated
connections between node triples (j, k, l).

Inspired by the cross-attention mechanisms (Vaswani, 2017),
we establish asymmetric information fusion by designating
different relationship tensors as query (Q), key (K), and
value (V) components. As shown in Fig. 1(c), the interaction
process begins with layer normalization of both tensors,
followed by learned linear projections:

qij =WQfNN
ij ,kjkl =WKfNE

jkl , vjkl =WV fNE
jkl , (9)

bikl =WBfNE
ikl , gikl =WGfNE

ikl , (10)

where WQ,WK ,WV ,WB ,WG are learnable projection
matrices. The bias term bikl and gating vector gikl enable
adaptive modulation of attention patterns.

For each attention head, the interaction weights are com-
puted through a gated softmax operation:

aijkl = Softmax
(qijkjkl√

d
+ bikl

)
× G(gikl), (11)

xlij =
∑
k,l

aijklvjkl, (12)

where G(gikl) = σ(gikl) denotes the gate function. This gat-
ing mechanism allows the model to selectively control the
flow of information, enhancing its ability to learn complex,
adaptive representations by emphasizing specific interac-
tions.

The final node update aggregates information from all neigh-
boring components:

xlattn =
∑

j∈N (i)

∑
k,l

aijklvjkl, (13)

where N (i) denotes the neighborhood of node i. This multi-
head attention formulation enables simultaneous modeling
of both direct many-body (node-node, node-edge-node) in-
teractions, effectively capturing complex many-body re-
lationships while maintaining permutation equivariance
through invariant tensor operations.

4.4. Equivariant graph neural message passing

As shown in Fig. 1(b), each EquiMP layer performs feature
updates through an additive residual scheme that preserves
geometric equivariance:

xl+1 = xl+∆xl, v⃗l+1 = v⃗l+∆v⃗l, el+1 = el+∆el. (14)

The update terms ∆xl,∆v⃗l,∆el are computed through
equivariant transformation blocks and respect the geometric
constraints.

This architecture ensures all feature updates transform equiv-
ariantly under SE(3) transformations while enabling rich
information flow between scalar and geometric represen-
tations. The residual connections help preserve physical
constraints while allowing deep feature integration across
multiple interaction scales.

Scalar-Vector Interaction The many-body attention mod-
ule is applied to the scalar features x to directly enable
four-body communication for feature updates. The updated
scalar feature xattn of node i is divided into three compo-
nents: x1i , x2i , and x3i . Meanwhile, the vector feature v⃗i is
split into two parts: v⃗1i and v⃗2i . The updated scalar feature
∆xi is derived by integrating v⃗1i :

∆xi = (Wv1 · v⃗1i + bv1)⊙ x1i + x2i , (15)

where Wv1 and bv1 are learnable parameters, and ⊙ denotes
the Hadamard product.

The update of vector features employs the Hadamard prod-
uct of the updated scalar feature x3i and the linearly trans-
formed v2i , in addition to incorporating the equivariant fea-
ture feqi :

∆v⃗i = (Wv2 · v⃗2i + bv2)⊙ x3i + f⃗eqi ,

f⃗eqi = s1 ⊙ v⃗j + s2 ⊙ r⃗ij
∥r⃗ij∥

,
(16)

where Wv2 and bv2 are learnable parameters. r⃗ij represents
the position vector from nodes i to j. The equivariant fea-
ture f⃗eqi is derived from the Hadamard product of s1 with v⃗j
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and the Hadamard product of s2 with the equivariant infor-
mation, where s1 and s2 are projections of the pre-update x
used as residuals.

Edge Update The update of edge features employs vector
rejection, which calculates the component of node features
perpendicular to the edge direction, thereby capturing the
influence of relative node positions on edge features. The
dot product wdot of vector rejections in two directions is
then computed:

wdot = R(v⃗i, r⃗ij) ·R(v⃗j ,−r⃗ij),

R(v⃗i, r⃗ij) = L(v⃗i)−
(
L(v⃗i) · r⃗ij
∥r⃗ij∥2

)
· r⃗ij ,

(17)

where L(v⃗i) denotes a linear transformation of v⃗i. The
computation for R(v⃗j ,−r⃗ij) follows a similar process.

Finally, the edge feature eij undergoes a nonlinear trans-
formation, and the Hadamard product with the dot product
result wdot yields the updated edge feature ∆eij :

∆eij = SiLU(We · eij + be)⊙ wdot, (18)

where We and be are learnable parameters.

4.5. Output Module

Through iterative processing via EquiMP layers that inte-
grate Many-body Attention mechanisms and Equivariant
Graph Message Passing operations, the system generates
updated scalar features x and geometrically aware vector
features v. These dual-modal features emerge as disentan-
gled latent descriptors encoding both invariant chemical
properties and directional spatial interactions within the
molecular system. These features are processed by the Out-
put Module to ultimately predict the energy E and atomic
forces F of the molecular system. The Output Module com-
prises multiple equivariant output blocks, where scalar and
vector features interact within each block as follows:

G = MLP (x||(Wov + bo)) . (19)

Here, the MLP consists of two linear layers with a SiLU
activation function, || denotes the concatenation operation,
and Wo and bo are learnable parameters. Following pooling
across multiple output blocks, the final output of the Output
Module yields the energy E. The force F⃗i acting on atom i
is computed as the negative gradient of E with respect to its
initial input coordinates posi, expressed as:

F⃗i = − ∂E

∂posi
. (20)

5. Experiments
5.1. Experimental Settings

In this section, we briefly introduce the benchmarks, base-
lines, and implementation details related to our experiment.
Further details are presented in the Appendix A.3-A.4.

Datasets We consider two challenging benchmarks of
MD22 and SPICE, following (Wang et al., 2024) and (East-
man et al., 2023). MD22 was introduced by (Chmiela et al.,
2023), containing a 42-atom peptide to a 370-atom nan-
otube, with high-resolution sampling at 400–500 K using
the PBE+MBD (Perdew et al., 1996; Tkatchenko et al.,
2012) framework for energy and force computations. The
training and testing splits used in MD22 are consistent with
those in methods such as LSR-MP (Li et al., 2023). SPICE,
collected by (Eastman et al., 2023), offers approximately
one million conformations for pharmaceutical molecules,
dipeptides, and solvated amino acids. SPICE spans a wider
range of chemical elements compared to MD22 and includes
both covalent and non-covalent interactions, with energy and
force calculations performed at the ωB97M-D3(BJ)/def2-
TZVPPD level of theory. Unlike MD22, which focuses
on training and testing within a single molecule, SPICE
enables cross-molecular training and testing, making it a
more comprehensive benchmark for assessing the general-
izability of molecular dynamics simulation models. The
SPICE dataset follows a consistent 8:1:1 split for training,
validation, and testing. For more details about the datasets,
please refer to Appendix A.3.

Baselines We compared our method with the state-
of-the-art baselines, including both GNN/Transformers-
based methods such as SchNet (Schütt et al., 2018),
sGDML (Chmiela et al., 2023), PaiNN (Schütt et al., 2021),
ET (Thölke & De Fabritiis, 2022), So3krates (Frank et al.,
2022), MACE (Batatia et al.), and Equiformer (Liao &
Smidt, 2023), as well as methods designed for modeling
many-body interactions, such as ViSNet (Wang et al., 2024)
and LSR-MP (Li et al., 2023). Additional baseline meth-
ods and their detailed descriptions are provided in Ap-
pendix A.4.

Implementation details All models are implemented in
PyTorch (Paszke et al., 2019) and trained using the Adam
optimizer (Kingma & Ba) with Mean Squared Error (MSE)
loss, unless otherwise specified. Training begins with a lin-
ear learning rate warm-up phase, followed by a systematic
reduction of the learning rate using a decay factor when-
ever the validation loss stagnates. All experiments are con-
ducted on either NVIDIA A800 Tensor Core GPUs. Our
code is publicly available at https://github.com/
biomed-AI/MABNet. Additional details on hyperparam-
eter settings are provided in Appendix A.5.
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Table 2. Mean absolute errors of energy (kcal/mol) and force (kcal/mol/Å) for 5 large-scale molecules on MD22.

Model Ac-Ala3-NHMe AT-AT AT-AT-CG-CG DHA Stachyose

Energy Forces Energy Forces Energy Forces Energy Forces Energy Forces

sGDML 0.3902 0.7968 0.7235 0.6911 1.3885 0.7028 1.3117 0.7474 4.0497 0.6744
PaiNN 0.1168 0.2302 0.1673 0.2384 0.2638 0.3696 0.1151 0.1355 0.1517 0.2329
ET 0.1121 0.1879 0.1120 0.2036 0.2072 0.3259 0.1205 0.1209 0.1393 0.1921
So3krates 0.337 0.224 0.178 0.216 0.345 0.332 0.379 0.242 0.442 0.435
Allegro 0.1019 0.1068 0.1428 0.0952 0.3933 0.1280 0.1153 0.0732 0.2485 0.0971
MACE 0.0620 0.0876 0.1093 0.0992 0.1578 0.1153 0.1317 0.0646 0.1244 0.0876
Equiformer 0.0828 0.0804 0.1309 0.0960 0.1510 0.1252 0.1788 0.0506 0.1404 0.0635
ViSNet 0.0796 0.0972 0.1688 0.1070 0.1995 0.1563 0.1526 0.0668 0.1283 0.0869
Equiformer-LSRM 0.0780 0.0887 0.1007 0.0881 0.1335 0.1065 0.0878 0.0534 0.1252 0.0632
ViSNet-LSRM 0.0654 0.0902 0.0772 0.0781 0.1135 0.1063 0.0873 0.0598 0.1055 0.0767

MABNet 0.0534 0.0773 0.0637 0.0731 0.1862 0.1251 0.0618 0.0502 0.0895 0.0752

5.2. Results on MD22 Dataset

To evaluate the capacity of higher-order many-body interac-
tion modeling in complex molecular systems, we first bench-
marked our approach against the comprehensive MD22
dataset. As demonstrated in Table 2, MABNet achieved
state-of-the-art performance, outperforming leading meth-
ods such as ViSNet and LSR-MP with an average 20%
reduction in mean absolute errors (MAEs) across both en-
ergy and force predictions. Notably, MABNet attained the
lowest MAEs in 7 of 10 metrics, including critical bench-
marks for the glycoside DHA (56 atoms) and the 189-atom
Stachyose system. This advancement arose from our many-
body attention module, which directly encoded high-order
interactions, bypassing the approximation errors inherent
in existing frameworks that relied on sequential message-
passing or aggregated lower-order expansions.

While MABNet achieved superior performance across most
systems, its energy MAE for the 370-atom carbon nanotube
(0.1862 kcal/mol) trailed ViSNet-LSRM (0.1135 kcal/mol).
We attributed this gap to the dominance of pairwise inter-
actions in symmetric systems with periodic geometries. In
such cases, methods like LSR-MP, which prioritize scalable
approximations of lower-order effects, gained an advantage
by focusing on dominant pairwise terms.

MABNet achieved superior energy predictions across all sys-
tems, but force MAEs occasionally lagged behind the base-
lines (e.g., Equiformer-LSR on Stachyose forces: 0.0632
vs. MABNet’s 0.0752). This divergence reflected the sen-
sitivity of force calculations, which depended on energy
surface gradients, in high-order expansions. While our mod-
ule captured global energy landscapes robustly, fine-grained
force accuracy might have benefited from local geometric
descriptors with subtle atomic displacements.

5.3. Results on SPICE Dataset

The SPICE dataset’s diversity provided a rigorous test for
evaluating a model’s ability to generalize across molecular
scales and interaction types. As shown in Table 3, our frame-
work achieved state-of-the-art performance in all categories,
demonstrating its capacity to unify many-body interaction
modeling within a single architecture. Specifically, for
dipeptides, where torsional flexibility and hydrogen bonding
introduce complex many-body effects, our model achieved
a force MAE of 7.7 meV/Å, outperforming TensorNet by
67%. This improvement highlighted the limitations of meth-
ods that approximate angular and torsional terms through
sequential message-passing. In solvated amino acids, a
regime demanding explicit modeling of solvent-solute polar-
ization, our framework reduced force errors by 52% (31.9
vs. 66.4 meV/Å) compared to models like DimeNet++ and
ET. These baselines, which lacked explicit higher-order
interaction terms, struggled to resolve the dynamic inter-
play between solvent molecules and solute charge distri-
butions. Critically, the cross-molecule robustness of our
approach stemmed from the many-body attention module,
which adaptively resolved both local (e.g., covalent bonds)
and non-local (e.g., solvation shells) interactions through
direct four-body communication. Unlike message-passing
frameworks, our method avoided accuracy degradation in
heterogeneous systems by explicitly encoding multi-body
physics.

5.4. Ablation Study

To better understand our model, we conducted ablation stud-
ies focusing on model architecture and the combinations
of many-body nodes. Table 4 summarized performance
across three chemically distinct systems: dipeptides, sol-
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Table 3. Mean absolute errors of energy (meV) and force (meV/Å) for 8 large-scale molecules on SPICE.
Molecular SchNet DimeNet++ ET TensorNet MABNet

PubChem Set 1 Energy 220.5 59.0 57.6 68.1 32.4
Forces 150.7 59.1 88.3 49.4 26.5

PubChem Set 2 Energy 222.5 60.6 55.8 32.5 27.2
Forces 144.1 58.5 80.8 39.2 21.7

PubChem Set 3 Energy 217.0 47.7 45.2 34.1 28.9
Forces 138.9 45.9 65.9 36.2 20.5

PubChem Set 4 Energy 299.9 44.6 40.6 32.8 26.7
Forces 153.3 42.3 58.8 35.1 20.3

PubChem Set 5 Energy 266.7 53.3 45.6 31.4 29.2
Forces 144.8 52.7 69.7 35.1 20.6

PubChem Set 6 Energy 242.9 32.8 30.7 23.8 17.3
Forces 135.6 31.2 43.7 27.7 14.1

Dipeptides Energy 386.2 169.9 26.0 28.7 9.6
Forces 118.2 45.8 34.8 23.1 7.7

Solvated Amino Acids Energy 1438.3 460.1 224.4 149.1 98.2
Forces 318.1 173.7 118.2 66.4 31.9

Average Energy 411.8 116.0 65.7 50.1 33.7
Forces 163.0 63.7 70.0 39.0 20.4

Table 4. Mean absolute errors of energy and force for different attention mechanisms on Dipeptides and Solvated Amino Acids (energy in
meV and force in meV/Å), and for Ac-Ala3-NHMe (energy in kcal/mol and force in kcal/mol/Å).

Methods Dipeptides Sol. Amino Acids Ac-Ala3-NHMe

Energy Forces Energy Forces Energy Forces

3-body Attn. (w/o Equi.) - - 151.5 59.4 - -

3-body Attn. 12.3 10.1 130.2 48.4 0.061 0.082

4-body Attn. (1.5N Edges) 11.2 8.4 119.3 36.3 0.058 0.080

4-body Attn. (3N Edges) 10.0 7.9 98.6 32.5 0.055 0.078

4-body Attn. (6N Edges) 9.6 7.7 98.2 31.9 0.053 0.077

vated amino acids, and the tripeptide Ac-Ala3-NHMe.

Removing equivariance from the 3-body attention module
(“3-body Attn. (w/o Equi.)”, similar to TGT) degraded force
prediction accuracy on solvated amino acids by 23% (59.4
vs. 48.4 meV/Å), demonstrating that roto-translation equiv-
ariance was critical for modeling orientation-dependent in-
teractions like hydrogen bonding and solvation. Extending
to 4-body attention while maintaining equivariance further
reduced force errors by 33% (48.4 vs. 32.5 meV/Å), con-
firming that higher-order terms were essential for resolving
multi-center polarization effects.

Increasing the edge density in 4-body attention—from
1.5N to 6N edges—progressively improved performance,
with force MAEs decreasing by 8% (7.9 vs. 7.7 meV/Å)
for dipeptides and 2% (32.5 vs. 31.9 meV/Å) for sol-

vated systems. This showed that while even sparse 4-body
graphs (1.5N edges) captured most many-body dependen-
cies, denser connectivity refined accuracy by explicitly mod-
eling weaker but chemically relevant interactions (e.g., van
der Waals contacts in Ac-Ala3-NHMe). Crucially, our effi-
cient attention mechanism minimized computational over-
head, with 6N edges incurring only a 1.1× runtime increase
over 1.5N, as shown in Table 5.

5.5. Computational Cost and Analysis

To further validate the efficiency of our approach, a tripep-
tide Ac-Ala3-NHMe was used to quantify computational
efficiency. Table 5 compared the efficiencies (’3-body Attn.
(w/o Equi.)’, similar to TGT), 3-body attention, and various
edge counts of 4-body attention in terms of memory con-
sumption, training speed, and inference speed. The results
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of the ablation study, presented in Table 4, revealed that
the mean absolute error (MAE) for the energy and forces
prediction using 4-body attention with 6N edges is markedly
lower than that of the 3-body Attn. (w/o Equi.). Notably,
this improvement in prediction accuracy came at a modest
cost, with memory consumption increasing by only 6.8%,
and no substantial degradation in training speed. Addition-
ally, we performed a comparative analysis of training and
inference costs with ViSNet. Our results indicated that the
improvement in prediction accuracy came at a modest cost,
with no significant degradation in training speed. A de-
tailed analysis of computational efficiency is provided in
Appendix B.2.

Table 5. Comparison of memory consumption, training speed for
different attention mechanisms on the Ac-Ala3-NHMe dataset.

Methods Type of
Many-body Attn.

Memory
(MiB)

Training
(it/s)

ViSNet - 15962 4.44

MABNet

3-body 16542 3.93

4-body (1.5N Edges) 17264 2.78

4-body (3N Edges) 17400 2.66

4-body (6N Edges) 17758 2.35

6. Conclusion
By explicitly modeling four-body interactions through a
geometric attention mechanism, MABNet advances molec-
ular property prediction with quantum-mechanical accuracy,
as demonstrated by state-of-the-art results on MD22 and
SPICE. Future work will extend this framework to five-
body and higher-order terms, enabling precise modeling of
systems governed by entangled electronic states (e.g., tran-
sition metal catalysts) or cooperative solvation effects. To
balance accuracy and scalability, we will explore adaptive
quantum-inspired pruning strategies that prioritize dominant
interactions in large systems. These advancements could
redefine computational chemistry workflows, accelerating
drug discovery through simulations that close the gap be-
tween empirical and ab initio accuracy.
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A. Additional Details
A.1. Further Details on Feature Embedding

Radial Basis Expansion Interatomic distances are projected into a higher-dimensional space using exponential normal
radial basis functions (RBFs), coupled with a cosine cutoff function to ensure smooth behavior near the cutoff distance.

The distance dij between atoms i and j is first expanded into a higher-dimensional space using a set of exponential normal
radial basis functions (RBF) (Unke & Meuwly, 2019; Thölke & De Fabritiis, 2022). Additionally, a cosine cutoff function is
applied to dij to ensure smoothness. The vector drbf consists of the values of n radial basis functions defined as:

drbfij = ϕ(dij) · exp
(
−βn (exp (α · (−dij))− µn)

2
)
, (21)

ϕ(dij) =

{
1
2 · cos

(
π · dij

dcut

)
+ 1, if dij < dcut,

0, if dij ≥ dcut.
(22)

where βn and µn represent the width and mean parameters of the radial basis function n, respectively. The parameter βn
controls the sensitivity of the radial basis function, while µn defines its center. α is a scaling factor that adjusts the rate of
exponential decay. The width parameter βn is set to (2n−1(1− exp(−dcut)))−2, following the approach described in Unke
& Meuwly (2019).

Scalar and Vector Node Feature Embedding The scalar feature xi of node i is derived from the initial embedding which
encodes the atom type zi, and the aggregated features from its neighboring nodes. First, node i maps its atom type zi to a
high-dimensional space using the embedding function femb

i , resulting in the initial node feature hi = femb
i (zi).

Next, node i gathers information from all its neighboring nodes j. The distance dij between nodes i and j is first truncated
using the cutoff function ϕ(dij), as described in Equation (22), to limit the influence of long-range interactions. A linear
transformation is then applied to the edge features drbfij , as defined in Equation (21), followed by multiplying the result with
the initial feature hj of the neighboring node j. The aggregated neighbor features xnbh for node i are obtained by summing
the contributions from all its neighbors:

xnbh =
∑

j∈N (i)

(ϕ(dij) · (Wnd
rbf
ij + bn)⊙ hj), (23)

where ⊙ denotes element-wise multiplication. Wn and bn are learnable parameters, and N (i) denotes the set of neighboring
nodes of node i. Finally, the scalar feature xi of node i is computed by concatenating its initial feature hi with the aggregated
neighbor features xnbh, followed by a linear transformation:

xi = Ws(hi || xnbh) + bs, (24)

where the || denotes the concatenation operation. Ws and bs are learnable parameters.

The vector feature v⃗i of node i is initialized as 0⃗.

Edge Feature Embedding The edge features eij are computed by combining the scalar features of nodes i and j, obtained
from Equation (24), with the projected edge attributes drbfij , derived from Equation (21). First, drbfij is transformed into a
higher-dimensional space using a linear projection. Then, the edge features are calculated as:

eij = (xi + xj)⊙ (Wrd
rbf
ij + br), (25)

where Wr and br are learnable parameters.

A.2. Quadruple Attention for Dihedral Angles

Our Many-body Interaction method employs Quadruple Attention to directly capture four-body interactions, specifically
the relationships among nodes i, j, k, l. These four atoms form a dihedral angle, as illustrated in Figure 2. In chemistry, a
dihedral angle is defined as the angle between two planes, each formed by three atoms, involving a total of four atoms. The
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common edge of these planes corresponds to a chemical bond (atoms k and l), while the planes themselves are determined
by the additional atoms i and j interacting with this bond.

Dihedral torsional potential serves as a crucial descriptor of energy variations in a non-collinear four-atom molecular system.
Compared to bond stretching and bond angle bending potentials, the dihedral torsional potential is relatively weaker but plays
a decisive role in molecular conformational changes. This is because variations in dihedral angles can lead to large-scale
rearrangements of molecular chains, ultimately influencing the overall shape and function of a molecule. For instance, in
biomacromolecules such as proteins and DNA, dihedral angle torsion dictates their three-dimensional conformations, which
are essential for their biological functions. Our approach enables comprehensive dihedral angle information capture through
direct four-body interactions, making it highly relevant for molecular dynamics simulations.
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Figure 2. Quadruple Attention-Based Visualization of the Dihedral Angle Formation by Atoms i, j, k, l.

A.3. Datasets

A.3.1. MD22

MD22 is a newly developed molecular dynamics benchmark dataset introduced by (Chmiela et al., 2023), designed to
provide novel challenges for the research and development of Machine Learning Force Fields (MLFFs). The dataset includes
a variety of molecular systems ranging from tens to hundreds of atoms, encompassing biomolecules such as simple peptide
chains and complex carbohydrates. These systems provide diverse training and testing scenarios for MLFF models. The
primary goal of MD22 is to enhance the accuracy and scalability of MLFF models, particularly in dealing with large
molecular systems that exhibit long-range interactions and complex molecular dynamics behaviors. The molecular dynamics
trajectories in the dataset are sampled within a temperature range of 400 K to 500 K, with a time resolution of 1 femtosecond
(fs). The potential energy and atomic forces for each system are computed using the PBE+MBD (Perdew et al., 1996;
Tkatchenko et al., 2012) theory level. Compared to the earlier MD17 dataset, the molecular systems in MD22 are larger and
more flexible, making them better suited for simulating long-range interactions and complex molecular dynamics behaviors.
Furthermore, MD22 offers greater molecular flexibility, allowing for the simulation of complex dynamic processes such as
molecular vibrations, rotations, and conformational changes. Table 6 provides an overview of the atomic counts, molecular
formulas, number of conformations, and the ranges of energy and force values for the systems in MD22.

Table 6. Properties of the MD22 datasets. Energies are in kcal/mol, forces in kcal/mol/Å.

Dataset Atoms Formula Conformations Energies Forces

Range Variance Range Variance

Ac-Ala3-NHMe 42 C12H22N4O4 85,109 102.19 67.30 437.99 678.02
DHA 56 C22H32O2 69,753 75.71 93.31 420.07 673.99
Stachyose 83 C24H42O21 27,272 106.15 189.33 426.08 655.55
AT-AT 60 C20H22N14O4 20,001 139.29 120.09 444.01 779.81
AT-AT-CG-CG 118 C38H42N30O8 10,153 243.50 246.64 407.55 768.13
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A.3.2. MD17

MD17, proposed by (Chmiela et al., 2017), is a molecular dynamics dataset specifically designed to support the development
of MLFFs. It includes ab initio molecular dynamics (AIMD) trajectories for a variety of small organic molecules across
multiple conformations. These molecules include, but are not limited to, benzene, toluene, naphthalene, ethanol, uracil, and
aspirin, offering a range of sizes and complex potential energy surfaces. Each molecular dataset contains between 150,000
and nearly 1 million conformational geometries, sampled at a time resolution of 0.5 femtoseconds (fs). The energy and
force labels for all systems were computed using the PBE+vdW-TS electronic structure method. The MD17 dataset was
designed to facilitate the development and validation of novel machine learning algorithms aimed at constructing accurate
and energy-conserving molecular force fields. It has been widely used to demonstrate the efficiency and accuracy of machine
learning models in predicting forces and energies, particularly when achieving high predictive accuracy with a limited
number of training samples. Table 7 summarizes the atomic counts, molecular formulas, number of conformations, as well
as the energy and force ranges for the molecules included in MD17.

Table 7. Properties of the MD17 datasets. Energies are in kcal/mol, forces in kcal/mol/Å.

Dataset Atoms Formula Conformations Energies Forces

Range Variance Range Variance

Ethanol 9 C2H6O 555,092 36.61 17.57 432.00 689.43
Malonaldehyde 9 C3H4O2 993,237 43.83 17.14 570.65 820.10
Uracil 12 C4H4N2O2 133,770 39.92 24.24 476.63 901.43
Toluene 15 C7H8 442,790 52.08 26.01 425.60 746.91
Salicylic acid 16 C7H6O3 320,231 47.47 29.34 453.77 817.37
Aspirin 21 C9H8O4 211,762 55.29 35.36 423.87 779.99

A.3.3. SPICE

SPICE is a quantum chemistry dataset specifically designed for training machine learning potentials, introduced by
(Eastman et al., 2023). It focuses on modeling interactions between drug molecules and proteins. The dataset includes
diverse conformations of drug molecules, dimers, dipeptides, and solvated amino acids, with tens of thousands to hundreds
of thousands of conformations for each category, as shown in Table 8. It spans more than a dozen chemical elements
and incorporates both charged and neutral molecules, providing a comprehensive sampling of covalent and non-covalent
interactions. All energies and forces are calculated using the ωB97M-D3(BJ)/def2-TZVPPD level of theory, alongside
additional useful information such as multipole moments and bond orders. Additionally, SPICE includes other valuable
quantum chemical properties, such as partial charges and multipole moments, which can be used to train different types of
models or enhance potential models through multitask learning.

SPICE comprises multiple subsets, each designed to provide specific types of information. To validate the efficacy of
the proposed many-body interaction approach in capturing the intricate details of large molecular systems, subsets with a
higher number of atoms were selected from the SPICE dataset for training and testing. Specifically, these subsets include
Dipeptides, Solvated Amino Acids, and PubChem Molecules. These subsets encompass a variety of chemical structures
ranging from dipeptides to complex drug-like molecules, thereby providing a comprehensive evaluation of the model’s
performance in handling large molecular systems.

Dipeptides The Dipeptides subset provides extensive coverage of covalent interactions in proteins. It includes 676
dipeptides composed of all possible combinations of 20 natural amino acids and their common protonation states, as well as
one pair of cysteine residues linked by a disulfide bond, resulting in 677 dipeptides. Each dipeptide is capped with ACE and
NME groups and has 50 conformations: half representing low-energy states and the other half high-energy states. These
conformations were generated using RDKit to create initial structures, followed by molecular dynamics simulations with
OpenMM 7.6 (Eastman et al., 2017) and the Amber14 (Maier et al.) force field at varying temperatures. This subset is
sufficient to sample all covalent interaction types found in naturally occurring proteins, excluding special cases such as
post-translational modifications.

Solvated Amino Acids The Solvated Amino Acids subset focuses on sampling non-covalent interactions between proteins
and water, as well as water-water interactions, which are crucial for protein simulations. This subset includes the 26 amino
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acid variants mentioned earlier, also capped with ACE and NME groups, surrounded by 20 TIP3P-FB water molecules. For
each amino acid, 50 conformations were generated. Each amino acid was placed in a cubic water box with a side length of
2.2 nanometers, and a 1-nanosecond molecular dynamics simulation was performed at 300 K, saving conformations every
20 picoseconds. The 20 water molecules closest to the amino acid were retained for each conformation, while the rest were
discarded. This allows researchers to study how the local water environment around amino acids influences protein behavior
effectively.

PubChem Molecules The PubChem Molecules subset comprises a large and diverse collection of drug-like small
molecules. Approximately 1.5 million entries were downloaded from the PubChem database, specifically from Bind-
ingDB (Liu et al., 2007) or ChemIDplus (cited in the U.S. National Library of Medicine databases). A filtering process was
applied to select as diverse a sample as possible based on Tanimoto similarity using ECFP4 fingerprints. For each molecule,
50 conformations were generated using the same procedure as the dipeptides to obtain both low- and high-energy states.
This subset is designed to provide broad chemical diversity, enabling models to better understand and predict molecular
behavior in complex and varied chemical environments.

Table 8. Properties of the SPICE datasets.

Subset Atoms (avg.) Molecules Conformations Elements

Solvated Amino Acids 88.12 26 1,300 H,C,N,O,SDipeptides 44.23 677 33,850

PubChem Set 1 33.78 2372 114,359

H,C,N,O,F,
P,S,Cl,Br,I

PubChem Set 2 37.05 2431 115,997
PubChem Set 3 37.46 2446 118,931
PubChem Set 4 37.70 2455 118,486
PubChem Set 5 37.02 2463 117,841
PubChem Set 6 38.49 2476 123,786

A.4. Baselines

A.4.1. BASELINES OF MD22

ViSNet (Wang et al., 2024) is an equivariant geometry-enhanced graph neural network designed to efficiently extract and
utilize geometric features for molecular modeling. By leveraging equivariance principles, ViSNet effectively integrates
geometric information into its architecture, enabling precise modeling of molecular structures with reduced computational
costs. This approach enhances the representation of molecular conformations and provides interpretability by mapping
geometric representations to molecular structures, making it a powerful tool for addressing challenges in molecular dynamics
and related fields.

Equiformer (Liao & Smidt, 2023) is a graph neural network that integrates the strengths of Transformer architectures
with SE(3)/E(3)-equivariant features based on irreducible representations (irreps). By replacing standard Transformer
operations with their equivariant counterparts and incorporating tensor products, Equiformer effectively encodes equivariant
information within irreps feature channels without adding complexity to graph structures. Furthermore, it introduces a
novel equivariant graph attention mechanism, which replaces traditional dot product attention with multi-layer perceptron
attention and incorporates non-linear message passing, enhancing its ability to capture geometric and relational information
in 3D atomistic graphs. With these innovations, Equiformer provides a simple yet powerful architecture for modeling 3D
molecular systems.

MACE (Batatia et al.) is a state-of-the-art machine learning force field architecture designed for a wide range of in-domain,
extrapolation, and low-data regime tasks. By employing a strictly local atom-centered model, MACE achieves high data
efficiency and is capable of accurately modeling diverse systems, including amorphous carbon, universal materials, small
organic molecules, large molecular systems, and weakly interacting molecular assemblies. Its architecture excels in tasks
such as constrained geometry optimization and molecular dynamics simulations, showcasing its versatility and ability to
handle complex physical and chemical phenomena.

LSR-MP (Li et al., 2023) is a novel framework that generalizes existing equivariant graph neural networks (EGNNs) by
efficiently incorporating long-range interactions while maintaining an effective description of many-body interactions.
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Inspired by fragmentation-based methods, LSR-MP aims to address the limitations of traditional machine learning and
fragmentation approaches in modeling chemical and biological systems. By extending the message-passing paradigm to
capture both short- and long-range interactions, this framework enhances the modeling of complex molecular interactions
and can be seamlessly integrated into existing EGNN architectures. Its general applicability and robustness are demonstrated
through consistent performance improvements across various EGNNs, including its application to ViSNet(ViSNet-LSRM)
and Equiformer(Equiformer-LSRM).

Allegro (Musaelian et al., 2023) is a strictly local equivariant deep neural network interatomic potential architecture designed
to achieve both high accuracy and scalability. Unlike traditional atom-centered message passing neural networks (MPNNs),
which are limited by the range of their information propagation, Allegro avoids message passing altogether. Instead, it
uses iterated tensor products of learned equivariant representations to model many-body interactions. This approach allows
Allegro to retain the accuracy of many-body potentials while maintaining the scalability of local methods, making it a
powerful tool for modeling the potential energy surfaces of molecules and materials.

So3krates (Frank et al., 2022) is a self-attention-based message passing neural network designed to capture non-local
quantum mechanical effects in molecules and materials. It introduces spherical harmonic coordinates (SPHCs) to encode
higher-order geometric information, enabling a non-local attention mechanism in SPHC space. By decoupling geometric
information from atomic features, So3krates constructs spherical filters that extend continuous filters to SPHC space, forming
the foundation for its spherical self-attention mechanism. This allows So3krates to model non-local effects over arbitrary
length scales with high data efficiency and generalization. It achieves state-of-the-art performance while being significantly
faster and more parameter-efficient than other models.

TorchMD-NET(ET) (Thölke & De Fabritiis, 2022) is a versatile framework for molecular dynamics simulations that
integrates classical and machine learning potentials. By expressing all force computations—such as bond, angle, dihedral,
Lennard-Jones, and Coulomb interactions—as PyTorch operations, TorchMD enables seamless compatibility with machine
learning techniques. TorchMD’s capabilities are validated through diverse applications, including standard Amber all-atom
simulations, learning ab initio potentials, and coarse-grained protein folding models.

PaiNN (Schütt et al., 2021) is a message passing neural network that extends traditional formulations by incorporating
rotationally equivariant representations, addressing limitations of invariant approaches in data efficiency. By leveraging
equivariant atomwise representations, PaiNN improves the prediction of chemical properties and tensorial quantities while
achieving state-of-the-art performance on molecular benchmarks. Its architecture reduces model size and inference time,
making it both accurate and efficient. PaiNN demonstrates its capability by simulating molecular spectra with speedups
of 4–5 orders of magnitude compared to electronic structure methods, showcasing its potential for accelerating molecular
dynamics and quantum chemistry studies.

sGDML (Chmiela et al., 2023) is a global machine learning force field designed to capture collective many-atom interac-
tions in molecular systems without introducing locality assumptions or uncontrolled approximations. Unlike traditional
approaches, sGDML preserves full correlation among all atomic degrees of freedom, allowing it to accurately model
complex molecules and materials with far-reaching interaction lengths. Using an exact, iterative, and parameter-free training
method, sGDML scales to systems with up to several hundred atoms while retaining the accuracy of global force fields. Its
performance is demonstrated on the MD22 benchmark dataset (42–370 atoms) and in robust nanosecond-scale path-integral
molecular dynamics simulations for supramolecular complexes.

A.4.2. BASELINES OF SPICE

TensorNet (Simeon & De Fabritiis, 2024) is an O(3)-equivariant message-passing neural network designed for efficient and
accurate representation of molecular systems. It leverages Cartesian tensor atomic embeddings, simplifying feature mixing
through matrix product operations. By decomposing tensors into rotation group irreducible representations, TensorNet
processes scalars, vectors, and tensors separately when needed, making it highly efficient. Compared to spherical tensor
models, TensorNet achieves state-of-the-art performance with significantly fewer parameters, even with a single interaction
layer for small molecular potential energies. Its framework also enables accurate predictions of vector and tensor molecular
properties alongside potential energies and forces, all while reducing computational cost. TensorNet thus provides a flexible
and powerful foundation for designing advanced equivariant models.

DimeNet++ (Gasteiger et al., 2020a) is a machine learning model for molecular property prediction that builds upon
a directional message-passing mechanism to capture intricate angular dependencies in molecular systems. It improves
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Table 9. Hyperparameters used for MD22, SPICE and MD17.

Parameter MD22 SPICE MD17

initial LR 1e-4 1e-4 3e-4
min LR 1e-7 1e-7 1e-7
LR warm up steps 1000 1000 1000
LR decay factor 0.8 0.8 0.8
LR patience (epochs) 30 30 30
optimizer Adam Adam Adam
energy loss weight 0.05 1.0 0.05
forces loss weight 0.95 10.0 0.95
embedding dimension 256 256 256
attention heads 8 8 8
batch size 2,4 2,4 4
number of layers 9 9 9
number of RBFs 32 32 32
cutoff (Å) 5.0 5.0 5.0

Table 10. Mean absolute errors of energy (meV) and force (meV/Å) for 7 small molecules on MD17.

Molecular SchNet DimeNet++ PaiNN SpookyNet GemNet ET NequIP SO3KRATES ViSNet Equiformer MABNet

Aspirin Energy 0.37 0.204 0.167 0.151 - 0.123 0.131 0.139 0.116 0.122 0.101
Forces 1.35 0.499 0.338 0.258 0.217 0.253 0.184 0.236 0.155 0.152 0.166

Ethanol Energy 0.08 0.064 0.064 0.052 - 0.052 0.051 0.061 0.051 0.051 0.039
Forces 0.39 0.230 0.224 0.094 0.085 0.109 0.071 0.096 0.060 0.067 0.074

Malonaldehyde Energy 0.13 0.104 0.091 0.079 - 0.077 0.076 0.077 0.075 0.074 0.051
Forces 0.66 0.383 0.319 0.167 0.155 0.169 0.129 0.147 0.100 0.125 0.122

Naphthalene Energy 0.16 0.122 0.116 0.116 - 0.085 0.113 0.115 0.085 0.085 0.053
Forces 0.58 0.215 0.077 0.089 0.051 0.061 0.039 0.074 0.039 0.046 0.045

Salicylic Acid Energy 0.20 0.134 0.116 0.114 - 0.093 0.106 0.106 0.092 0.099 0.059
Forces 0.85 0.374 0.195 0.180 0.125 0.129 0.090 0.145 0.084 0.090 0.087

Toluene Energy 0.12 0.102 0.095 0.094 - 0.074 0.092 0.095 0.074 0.085 0.047
Forces 0.57 0.216 0.094 0.087 0.060 0.067 0.046 0.073 0.039 0.048 0.044

Uracil Energy 0.14 0.115 0.106 0.105 - 0.095 0.104 0.103 0.095 0.099 0.057
Forces 0.56 0.301 0.139 0.119 0.097 0.095 0.076 0.111 0.062 0.076 0.067

computational efficiency and simplifies the architecture compared to its predecessor, DimeNet. Additionally, DimeNet++
incorporates ensembling and mean-variance estimation techniques to enable uncertainty quantification, making it suitable
for exploring complex molecular configurations, including non-equilibrium structures.

SchNet (Schütt et al., 2018) is a deep learning architecture designed for modeling quantum interactions in molecules, lever-
aging continuous-filter convolutional layers to capture local correlations without relying on grid-structured data. By directly
utilizing the precise locations of atoms, SchNet preserves essential physical information and ensures rotationally invariant
energy predictions. The model jointly predicts total energies and interatomic forces, yielding a smooth, differentiable
potential energy surface according to quantum-chemical principles.

A.5. Hyper-parameters

To account for the differences in dataset sizes and data distribution, distinct hyperparameter configurations were selected
for the MD22, SPICE, and MD17 datasets, as summarized in Table 9. The Adam optimizer was chosen as the unified
optimization strategy, and the energy loss weight and forces loss weight were adjusted based on the specific characteristics
of each dataset. In particular, for the SPICE dataset, which involves more intricate intermolecular interactions, the force
loss weight was increased to enhance the model’s sensitivity to subtle variations in the force field. This adjustment aims to
improve the model’s performance in handling complex molecular systems.
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B. Additional Experiments
B.1. Results of MD17

The performance of MABNet on the MD17 dataset was presented in Table 10. It achieved higher accuracy than models like
So3krates and is comparable to ViSNet and Equiformer. MABNet showed no significant improvements compared to other
state-of-the-art (SOTA) models, as higher-order many-body interactions were not pronounced in small molecular systems.

B.2. Computational Cost and Analysis

To further validate the efficiency of our approach, a tripeptide Ac-Ala3-NHMe was used to quantify computational efficiency.
Table 11 summarized a comparative study across different configurations: 3-body attention without equivariance (denoted as
’3-body Attn. (w/o Equi.)’, akin to TGT), standard 3-body attention, and several variants of 4-body attention with varying
edge counts. All experiments were conducted on an NVIDIA GeForce RTX 4090 GPU with a batch size of 4. The results,
presented in Table 4, showed that 4-body attention with 6N edges significantly reduces the mean absolute error (MAE)
for both energy and force predictions, compared to the 3-body Attn. (w/o Equi.). This improvement in accuracy was
achieved with only a 6.8% increase in memory consumption and no notable degradation in training speed. Furthermore, we
conducted a comparative analysis of training and inference costs with two representative baselines, Geoformer (Wang et al.,
2023a) and ViSNet (Wang et al., 2024). Our method exhibited a favorable trade-off between accuracy and computational
overhead, demonstrating that the proposed 4-body attention mechanism offered improved predictive performance without
compromising training or inference efficiency.

Table 11. Comparison of memory consumption, training and inference speeds for different attention mechanisms on the Ac-Ala3-NHMe
dataset.

Methods Type of
Many-body Attn.

Memory
(MiB)

Training
(it/s)

Inference
(it/s)

Geoformer - 14362 5.09 13.58

ViSNet - 15962 4.44 11.66

MABNet

3-body Attn. 16542 3.93 10.65

4-body Attn. (1.5N Edges) 17264 2.78 6.77

4-body Attn. (3N Edges) 17400 2.66 6.62

4-body Attn. (6N Edges) 17758 2.35 5.91

B.3. Additional Ablation Atudy Comparing ViSNet and MABNet on Ac-Ala3-NHMe.

To further investigate the impact of the many-body attention mechanism in MABNet, we conducted ablation studies
comparing its performance with ViSNet on Ac-Ala3-NHMe. ViSNet used a runtime geometry calculation (RGC) mechanism
to encode angular and torsional information via pairwise message passing, indirectly modeling higher-order interactions.
MABNet, on the other hand, introduced a direct many-body attention mechanism, enabling joint updates among multiple
atoms (e.g., four atoms involved in a dihedral angle). This direct interaction allowed our model to more effectively capture
complex molecular geometries. Table 12 presented the comparison between the two models. MABNet achieved a significant
reduction in energy prediction error, improving over ViSNet by 32.9%.

Table 12. Comparison of energy and force prediction errors between ViSNet and MABNet with different many-body attention mechanisms
on Ac-Ala3-NHMe (energy in kcal/mol and force in kcal/mol/Å).

Methods Ac-Ala3-NHMe

Energy Forces

ViSNet 0.080 0.097

MABNet (2-body) 0.072 0.092

MABNet (3-body) 0.061 0.082

MABNet (4-body) 0.053 0.077
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